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Bifurcations from steady sliding to stick slip in boundary lubrication

A. A. Batista and J. M. Carlson
Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106

~Received 14 August 1997!

We explore the nature of the transitions between stick slip and steady sliding in models for boundary
lubrication introduced in J. M. Carlson and A. A. Batista, Phys. Rev. E53, 4153~1996!. The models are based
on the rate and state approach which has been very successful in characterizing the behavior of dry interfaces
@A. Ruina, J. Geophys. Res.88, 10 359~1983!#. Our models capture the key distinguishing features associated
with surfaces separated by a few molecular layers of lubricant. Here we find that the transition from steady
sliding to stick slip is typically discontinuous and sometimes hysteretic. When hysteresis is observed it is
associated with a subcritical Hopf bifurcation. In either case, we observe a sudden and discontinuous onset in
the amplitude of oscillations at the bifurcation point.@S1063-651X~98!01605-5#

PACS number~s!: 81.40.Pq, 46.10.1z, 46.30.Pa, 83.20.Bg
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I. INTRODUCTION

Friction plays a central role in a wide variety of system
In order to design reliable machines and make accurate
dictions for their dynamical response it is necessary to
velop models and phenomenological constitutive relati
which describe the friction acting between slipping surfac
Constitutive relations involve mean-field-like dynamic
variables which represent the collective evolution of the m
croscopic degrees of freedom. They play important roles
the design and control of engineering systems such as
tilock brakes and nanometer positioning devices@1,2#. Par-
ticularly with the development of micromechanical m
chines, a more complete understanding of friction
molecular scales has become increasingly important@3#. This
has led to the development of new experimental tools suc
the surface force apparatus~SFA! which allows for the pre-
cise measurement of friction in thin lubricant films~see Fig.
1!.

In the regime referred to as boundary lubrication atom
cally flat surfaces are separated by a few molecular layer
lubricant, and the behavior of the interface becomes qua
tively different from the more familiar case of bulk viscosi
which is traditionally associated with lubricants. In bounda
lubrication the interfacial material can pack into a solidli
structure due to its confinement and exhibit properties s
as a finite yield stress and stick slip instabilities~see Fig. 2!.
@4–6#. Even when the interface slips steadily the friction
resistance can be six orders of magnitude greater than th
the bulk @7#. Certain aspects of this scenario may also
relevant for rough surfaces in which the asperity contacts
separated by thin layers of lubricant, although in that case
friction is likely to involve asperity deformation as well.

Recent experiments have begun to quantitatively cap
specific features associated with boundary lubrication at
interfaces which differentiate the frictional properties of th
regime from that of both bulk lubricants and dry interfac
@5,6,8#. The key differences are revealed by studying effe
which are time dependent. In contrast to steady state slid
where the only dynamical variable the friction can depend
is the constant slip speedV, transient effects and stick-sli
oscillations reveal the history dependence which to date
571063-651X/98/57~5!/4986~11!/$15.00
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vides some of the best clues for the microscopic mechani
which are responsible for the dissipation. Both large sc
numerical simulations@9# and more recently experimenta
studies@10# suggest that sticking of the slider block is ass
ciated with a freezing or glasslike transition, while the m
croscopic signature of the initiation of slip is associated w
a shear melting transition in the lubricant layer.

Our study of phenomenological descriptions of bound
lubrication follows a large body of work, primarily within
the rock mechanics community, on rate and state laws
dry interfaces which were introduced by Ruina@11#. Ruina’s
constitutive relation is remarkably effective at capturi
steady state and certain transient effects in a wide variet
materials with micron scale roughness@12,13#. The approach
involves expressing the friction in terms of the instantane
slip speed at the interface and one or more state variables
which phenomenological evolution equations are also in
duced. The underlying assumption is that the interfacial a
is large enough to be self-averaging, so that a mean-field-
state variable is sufficient to capture the collective dep
dence of the microscopic degrees of freedom on the dyna
cal variables—time, displacement, slip speed—that cha
terize the motion. Of course, this basic approach need no
general apply. Instead it represents an initial attempt to
an underlying physical mechanism to capture observed t
sient effects which cannot be accounted for in a simple f
tion law where the force depends only on the instantane
slip speed.

A great deal of work has been done using Ruina’s mod
The efforts included parallel experimental study@12,14,23#
and in depth dynamical systems analysis@15–18#. The latter
has led to important insights into the kinds of transient p
nomena which might be expected in systems described
the specific history dependent dynamics described by R
na’s law. This in turn has led to new experimental tests of
applicability of this description.

In terms of the basic phenomenology of friction at inte
faces, one of the interesting features of boundary lubrica
is that it is clearly different from both dry interfaces and bu
lubrication. We expect there may be interesting relationsh
between this system and others in which the interface
filled with material ~e.g., granular material, foam, or fau
4986 © 1998 The American Physical Society
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57 4987BIFURCATIONS FROM STEADY SLIDING TO STICK . . .
gouge! which may undergo a state change in response
shear. Recently, we proposed a rate and state descriptio
boundary lubrication@19#. As with the experimental system
our model exhibits a discontinuous transition from stick s
to steady sliding which depends on both the drive veloc
and the stiffness, illustrated as a function of the drive vel
ity in Fig. 2. As described in Ref.@19#, the model captures
additional important features which distinguish boundary
brication from dry interfaces and which are thought to
associated with the physical mechanism of shear melting
glassy freezing. More recently we have begun to make m
detailed quantitative@20# comparisons between our mod
and the experimental results.

It is the purpose of this paper to explore the properties
these models in the framework of dynamical systems in
der to understand its properties in greater depth analytica
In contrast to Ruina’s model for dry friction which exhibits
continuous supercritical Hopf bifurcation@13#, we obtain a
discontinuous transition between stick slip and steady slid
in agreement with the experimental observations. We a
lyze the transition using linear stability analysis@21#, and
accompany this with a series of numerical studies which
date yield exclusively discontinuous transitions, in so
cases with an absence of hysteresis. In every case we fin
transition to stick slip is sudden, with no intermediate regi
of small oscillations. Our results give more precise crite
for direct comparisons between phenomenological mod
experiments, and atomistic simulations.

In Sec. II we present a brief description of the models
study, as well as some of the experimental and numer
background which has motivated this work. In Sec. III w
present our analytical results, explored in greater depth in
Appendix. In Sec. IV we present numerical results for t
stable and unstable solutions. We conclude with a discus
in Sec. V.

II. BACKGROUND: EXPERIMENTS, NUMERICS,
AND PHENOMENOLOGY

The experiments of Israelachvili and his co-workers ha
yielded many new insights into the nature of friction a
lubrication @4–6#. Their results have been obtained using
surface force apparatus~SFA!, which consists of two atomi-
cally smooth mica cylinders, separated by a few molecu
layers of lubricant, and sheared at right angles via an adj
able coupling spring. Elastic deformation due to the norm
load flattens the contact surfaces, so that the interface is

FIG. 1. The SFA experimental setup is mechanically equiva
to a slider block connected to an elastic spring which is pulled
one end at velocityV while in contact with a stationary lubricate
surface. The radius of the contact area is of order tens of mic
and the thickness of the lubricant is of order 10 Å. Typical dri
velocities are in the range 0.001–10mm/s.
to
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curately represented by the schematic diagram in Fig. 1.
upper cylinder corresponds to the rigid slider block whi
rests on a stationary surface, represented by the lower c
der. The block is connected to a spring of strengthk, which
corresponds to the linear elastic response of the SFA dri
and the other end of the spring is pulled forward at veloc
V. Because the interface is smooth, flat, and rigid~at least
when compared with the lubricant!, one can be reasonabl
confident that variations in the frictional resistance are as
ciated with dynamically induced variations in the lubrican
Note, however, that interactions between the mica and
lubricant due to different relative crystallographic orient
tions of the upper and lower plates can play an import
role, as can additional parameters such as the load, the
perature, the number of layers of the lubricant, and its che
cal composition. For the purpose of this paper we will a
sume these parameters are fixed, and instead focus
attention on the behavior of the system as a function of
external mechanical variables which are most directly as
ciated with the driver, that is the elastic couplingk and pull-
ing speedV.

t
t

ns

FIG. 2. Traces of the spring forceF as a function of time for
increasing pulling velocitiesV. ~a! illustrates experimental data
from @6# for a hexadecane film at 17 °C (T,Tc) with step increases
in velocity V marked by the dotted lines. The critical velocity fo
this system isVc'0.4m/s. ~b! illustrates numerical solutions fo
model I with the parameter values marked in the figure. The res
are presented in terms of the dimensionless units. In each case
is a discontinuous transition from stick-slip behavior to steady s
ing at V5Vc , which we take to be the first velocity at which th
stick-slip spikes disappear as the velocity is increased in sm
steps.
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4988 57A. A. BATISTA AND J. M. CARLSON
The equation of motion for the slider block is given by

MÜ52k~U2Vt!2F0~u,U̇ !, ~1!

whereU(t) is the displacement of the upper block, and d
denote derivatives with respect to timet. The goal of these
experiments is to determine the interfacial frictionF0 by
monitoring the spring force2k(U2Vt) as a function of
time. In principleF0 depends not only on the instantaneo
slip speed, but also on the slip history and the microsco
configuration of the lubricant.

In a Newtonian fluid the resistance is simply proportion
to the slip speed and captured by a single parameter,
friction coefficient b, so thatF05bU̇. When this friction
law is substituted into Eq.~1! all initial conditions converge
to the steady sliding stateU̇(t)5V for any value ofk andV.

The surprising new results obtained by Israelachvili a
his co-workers were the observations that as the thicknes
various lubricants was reduced to molecular dimensions,
fluidlike properties of the interface were replaced by featu
more reminiscent of solids@4#. In particular, they observed
that the films could support a finite shear stress and exh
either stick slip dynamics or steady sliding depending o
variety of experimental parameters includingk andV. Using
molecular dynamics~MD! simulations Thompson and Rob
bins studied boundary lubrication in the underdamped
gime @9,22#. Based on their results they suggested that
onset of slipping on each stickslip cycle coincides with sh
melting of the lubricant layer, and that the transition
steady sliding could be identified with conditions und
which the energy supplied to the system during slip was
large enough to prevent the system from refreezing.

Phenomenologically, it is possible to obtain stickslip s
lutions to Eq.~1! using a wide variety of friction laws. Fo
example, if we restrict our attention to the subset of fricti
laws which depend only on the instantaneous veloc
F0(U̇), steady sliding states are unstable over any rang
velocities whereF0 exhibits velocity weakening. Further
more, a transition to steady sliding could be associated w
a crossover to a velocity-strengthening regime inF0 . How-
ever, this approach predicts that the transition depends
on the drive velocityV, which violates experimental obse
vations in which the transition to steady sliding may also
associated with an increase in stiffness.

A more accurate description of the data can be obtai
by including history-dependent effects in the friction law.
the case of dry friction at rough interfaces, Ruina introduc
a rate and state constitutive relation which captures cer
experimental aspects~the transients associated with veloci
shifts in the steady sliding regime! of that system surpris
ingly well @11–13,23,24#. More recently, Caroliet al. @25#
modified the model to give a better fit to the dynamical ph
diagram as a function ofk andV for that system.

The rate and state approach is a phenomenological fi
the data, in which the friction is written as a function of th
instantaneous slip speedU̇ and one or more state variable
u i : F0(U̇,$u i%). The primary justification for including mul-
tiple state variables arises when multiple time and/or len
scales are relevant in the problem. The state variables
described by evolution equationsu̇ i5Q i(U̇,$u i%), so that
s

ic

l
he

d
of
e
s

it
a

-
e
r

r
st

-

y
of

th

ly

e

d

d
in

e

to

h
re

when combined with the equation of motion, the system
described by two or more coupled ordinary differential equ
tions ~ODE’s!. This approach assumes that microscopic flu
tuations in the state of the lubricant can be neglected in
equations of motion, on the basis that their time scales
very small compared to those characteristic of the mac
scopic degrees of freedom of the system as a whole,
occur on length scales which are small compared to the c
tact area.

Previously we proposed a rate and state law for the c
of boundary lubrication@19#. We defined the friction to be a
continuous function, depending on the rate and a single s
variable, with the simplest possible dependence~linear! on
these arguments:

F05H ~2`,su#, U̇50

su1bU̇, U̇.0.
~2!

We loosely associateu with the degree to which the lubrican
is melted. The evolution equations~below! will be defined so
that u is positive and bounded above and below. Large v
ues ofu correspond to a more solidlike lubricant with high
frictional resistance, while lower values ofu correspond to a
more melted lubricant, with a smaller state-dependent con
bution to the resistance. We express the two contribution
the sliding friction (U̇.0) in terms of a standard Newtonia
term bU̇ and the state termsu. Heres represents the load
so that the friction is proportional to load in the more soli
like elastic regime.

The two models we will consider differ~in a fairly minor
way! in terms of the evolution equations for the state va
able. We refer to the original model as model I and the n
model as model II. We introduce two models primarily f
technical reasons, which will become apparent as we proc
with our analysis. However, it will be interesting to note ho
small changes in the phenomenological equations can re
in changes in the nature of the bifurcation.

The evolution equation for model I is given by

u̇5~u2um!F ~uM2u!

t
2aU̇G . ~3!

The evolution equation for model II is given by

u̇5~u2um!F ~uM2u!

t
2a~u2um!U̇G . ~4!

The two models thus differ only by the extra factor of (u
2um) in the last term.

Both of these equations are motivated by Thompson
Robbins’ numerical evidence that the lubricant layer melts
response to shear. Here the state variable is loosely as
ated with the degree to which the lubricant layer is melt
The minimum valueu5um correspond to a fully melted
layer, and the maximum valueu5uM corresponds to the
fully frozen case. Equations~3! and ~4! are constructed so
that any initial stateum,u,uM remains bounded in this
interval.

The first term on the right-hand side of both of the ev
lution equations is the simplest way to describe the fact t
in the absence of shear stress~zero shear velocityU̇50! the
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57 4989BIFURCATIONS FROM STEADY SLIDING TO STICK . . .
melted phase is unstable and the frozen state is stable. F
any initial stateu0Þum the film approaches the frozen sta
at a rate which is proportional tot with a sharp increase at
characteristic timet* ~derived in@19#!

t* 5
t

~uM2um!
lnS uM2u0

u02um
D'2

t ln~u02um!

uM2um
. ~5!

The closer the initial state is to the fully melted configurati
the longer it takes for the system to freeze. For the sli
block described by Eq.~1! the monotonic increase ofu cor-
responds to a steady increase in the static friction, wh
approaches some asymptotic limit ast→` in agreement
with experimental observations.

The second terms on the right-hand sides of Eqs.~3! and
~4! describes the tendency of the film to become increasin
melted as the block begins to slip. Assuming the block
initially at rest at the origin and is subject to a constant pu
ing speedV ~for convenience here assumed to be small! the
onset of slip occurs at timet05uM /kV, where we assume
the value ofu at the onset of slip isu'uM . If the healing
time t is large, then the first term on the right can initially b
ignored. For model I we obtain an exponential decay of
friction with accumulated slip (u2um)'(uM2um)exp2U/a,
while for model II we obtain power-law relaxation (u
2um)'@aU11/(uM2um)#21. In both cases, melting oc
curs over a characteristic length 1/a.

Most of the parameters in these models can be estim
based on observations. The minimum value of the state v
ableum is approximately equal to zero, so that the friction
taken to be purely viscous in this regime@26#. The maximum
valueuM is set by the maximum static friction, obtained
terms of the peak spring force prior to slip following lon
intervals in which the block is at rest. Experimentally, t
characteristic freezing timet has been estimated using a sp
cific time-dependent driving referred to as a ‘‘stop-start’’ e
periment. Here the slider block is pulled at velocityV in the
steady sliding regime, then the pulling is ceased altoge
for a time intervaltS , after which it is recommenced at th
initial speedV. The spring force is measured, and for sto
ping times less than a characteristic nucleation timetN the
mass begins sliding as soon as pulling is reinitiated and
spring force returns smoothly to its original value. On t
other hand, iftS.tN the block remains stuck until the ap
plied stress exceeds the yield stress at which point the b
begins to slide. This is manifest in an observed peak,
stiction spike, in the spring force, which has a sharp onse
tS'tN . Models I and II exhibit this behavior as well, an
the stop time associated with the experimental emergenc
the stiction spike can be mapped onto the model valuet*
@Eq. ~5!# giving a fit to the variablet. We also expect thatt
will be sensitive to temperatureT, increasing with increasing
temperature, and approaching infinity at the melting te
peratureT5Tm

c of the film. With current experimental infor
mation, the most difficult parameter to estimate is the ch
acteristic melting length 1/a. We expect a to be a
monotonically increasing function of the film thickness,
that we obtain only bulk viscosity when the lubricant film
very thick. For now we will leavea as an almost free pa
rameter for fitting our results with data from MD comput
simulations or experiments.
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III. ANALYTICAL RESULTS

In this section we present a bifurcation analysis of E
~1!–~4!. We focus our attention on the behavior of the mo
els as a function of the stiffnessk and drive velocityV. We
assume the system is in the overdamped limit, in agreem
with our best fits to experimental data@19,20#. This allows us
to drop the inertial term in Eq.~1!.

For large values ofk and V both models exhibit only
steady sliding solutions, characterized by constant sp
force. However, whenk and V are decreased sufficientl
there is a transition to stick slip solutions such as those
Fig. 3, where we illustrate a series of stick-slip puls
obtained numerically for models I@~a! and ~b!# and II @~c!
and ~d!#. The results are obtained using the same param
values at fixedk with two different ~increasing in this case!
drive velocities. In spite of the similarity of the models, th
slip pulse shapes are quite different, with model I exhibiti
extended periods of almost steady sliding as the transitio
approached. While the slip pulses obtained for model I are
comparatively greater duration and period, at these param
settings model I is further from the transition velocity tha
model II.

We begin our analysis with model I, followed by a sum
mary of the relevant differences obtained for model II. W

FIG. 3. Traces of the spring force2k(U2Vt) as a function of
time for increasing pulling velocitiesV, obtained as numerical so
lutions to Eqs.~8! in ~a! and~b! and Eqs.~19! in ~c! and~d!. In each
case we set the parameters according to experimental estimatt
52 s, s5100 mN, um50, uM51, b563104 Pa s m, and 1/a
51 mm ~see text!, and takek53.5 kN/m. For both models we ob
serve a discontinuous transition from stick slip to steady sliding
valueV5Vc , defined to be the first velocity at which the stick-sl
spikes disappear~and the spring force becomes constant with tim!
as the velocity is increased in small steps. At this value ofk for
model I Vc50.475mm/s, and for model IIVc50.397mm/s.
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4990 57A. A. BATISTA AND J. M. CARLSON
first rewrite the equations in terms of dimensionless va
ables:

t̃5
k

b
t,

t̃5
kt

buM
,

Ũ5
k

suM
U,

ã5
suM

k
a,

Ṽ5
bV

suM
,

ũ5u/uM . ~6!

Times have been scaled by the characteristic timeb/k asso-
ciated with the exponential relaxation of a simple ov
damped oscillator~with no state variable! to the steady slid-
ing state. Our scaling of the freezing timet includes a
~dimensionless! factor of uM which accounts for the magni
tude of the state variable in the asymptotic frozen state. D
placements have been rescaled by the characteristic slip
placementsuM /k of an undamped oscillator which begins
slip when the spring force reaches the maximum static f
tion and resticks when the slip speed returns to zero.
state variable is scaled by its maximum value, so tha
rescaled units 0, ũ,1.

It is most convenient to analyze the coupled ODE’s@Eqs.
~1!–~3!# as an autonomous system, so we also transform
reference frame moving at the drive velocity

Ũ85Ũ2Ṽt̃. ~7!

Finally dropping the tildes and primes, when the block
sliding our system becomes

U̇52U2u2V,

u̇5uF ~12u!

t
1a~U1u!G . ~8!

Equations~8! always exhibit a steady state solution of t
form

Uss
I 52~uss

I 1V! ~9!

and

uss
I 5H 12atV, V,1/at

0, V.1/at ,
~10!

which is obtained from Eqs.~8! by settingU̇5 u̇50. In the
original reference frame this solution corresponds to
block slipping uniformly at the pulling speed. One awkwa
feature of model I is the fact that the steady state value ou
is zero for pulling speeds greater than 1/at. While u50 can
i-
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e
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only be obtained in asymptotic time from Eqs.~8!, u does
become very small quickly, slowing the evolution drama
cally. This can lead to pathological effects at high spee
For example, the freezing time as measured in stop-start
periments becomes unrealistically dependent on the cum
tive slipping time preceding the stopping interval. In our pr
vious studies we have avoided this high speed regime. T
feature does not arise at all in model II. In that case,
steady state value ofu decreases smoothly towards zero
V→` in contrast to the piecewise linear form given in E
~10!.

A straightforward linear stability analysis of this solutio
yields the bifurcation point, where the steady sliding soluti
becomes unstable to stick slip. To this end, we again cha
variables, this time so we can linearize about steady slid
state:

U5Uss
I 1x,

u5uss
I 1y. ~11!

Retaining only the linear terms inx andy we obtain

S ẋ
ẏD5JIS x

yD . ~12!

Here the Jacobian matrix is given by

JI5S 21 21

uss
I a uss

I ~a21/t!
D . ~13!

The equation for the eigenvalues ofJI is

l22lTrJ1detJ50 ~14!

from which we see that the eigenvalues are complex co
gates with real partg5TrJ/2 and imaginary partV5
6AdetJ2(TrJ/2)2. In the steady sliding regimeV.VH

I the
real parts are negative (g,0). At the bifurcation pointV
5VH

I they cross the imaginary axis (g50). And in the stick-
slip regime they are positive (g.0). For this specific mode
we find

g52a~at21!~V2VH
I !,

V5A1/~at21!2g2. ~15!

We also have at the bifurcation pointVÞ0 anddg/dVÞ0.
These are the necessary requirements for a Hopf bifurca
and it occurs at the pulling speed

VH
I 5

1

~at! F12
1

~a21/t!G . ~16!

In other words, if we begin in the steady sliding state, a
decrease the velocity with all other parameters remain
fixed, the constant velocity solution becomes unstable
small perturbations whenV5VH

I . Reintroducing dimen-
sional variables, we findVH

I decreases linearly with increas
ing stiffnessk:
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57 4991BIFURCATIONS FROM STEADY SLIDING TO STICK . . .
VH
I 5

uM
2

~at! F12
k

~sa2b/t!uM
G . ~17!

From Eq.~17! we see there is a maximum stiffnesskmax at
which VH

I 50. For k.kmax the steady state solution remain
stable for all pulling speedsV.

These results are summarized in the dynamical phase
gram illustrated in Fig. 4, in which we have set our para
eters according to estimated experimental values@6,10#. In
particular, we taket'2 s on the basis of fits to the stop-sta
experiments. Typical loads are of orders5100 mN, and
uM'1 based on peak values of the static friction. The fr
tion coefficient is estimated to beb'63104 Pa s m@27#.
The free parametera is set using the transition velocityVH
'10mm/s for a specific value ofk5440 N/m. This yields
1/a'1 mm. The rest of Fig. 4 is generated using these v
ues in Eq.~17! as the stiffness ranges between its maxim
kmax573104 N/m and minimum valueskmin50.

The natural next step in analyzing the bifurcation wou
be to determine via normal forms whether the bifurcation
predicted to be subcritical or supercritical. For model I, t
leading term in this analysis is zero~see the Appendix!
which is inconclusive, albeit consistent with our numeric
observation of a discontinuous, nonhysteretic transition fr
steady sliding to stick slip. It is primarily for this technica

FIG. 4. Dynamical phase diagram for~a! model I, with param-
eters set by experimental values~see text!. Numerical simulations
for the phase boundary agree with the linear stability analysis
sented in Sec. III. The transition is observed to be discontinuo
but not hysteretic.~b! represents the analogous results for model
Here the transition is hysteretic, in agreement with the norm
forms bifurcation analysis.
ia-
-

-

l-

s

l

reason that we introduced the alternative model II. We h
no stronga priori basis to prefer one model over the other
this point. Technically model I involves slightly simple
functional forms, while model II avoids pathological beha
ior in the high velocity regime. In principle, we expect th
best fit of the data would be obtained in terms of a system
~e.g., polynomial! expansion of the friction and evolutio
equations in Eqs.~2! and~3!. Of course that would involve a
tradeoff between the number of parameters and the comp
ity of the model versus accuracy of the data fit.

Now we outline the modifications to the above calcu
tions which we obtain for model II. The transformatio
which leads to dimensionless variables is the same as
given in Eq.~6! for model I with the exception of the resca
ing of a, which now is given by

ã5
suM

2 a

k
. ~18!

This leads to rescaled equations in the moving frame@analo-
gous to Eqs.~8!# which are of the form

U̇52U2u2V,

u̇5uF ~12u!

t
1a~U1u!uG . ~19!

The steady sliding solution, analogous to Eqs.~9! and~10!, is
given by

Uss
II 52uss

II 2V ~20!

and

uss
II 5

1

11atV
. ~21!

As previously mentioned,uss
II is smooth and positive here

rather than being piecewise linear and zero for larger pull
speeds.

As before@Eqs.~11!# we linearize about the steady slidin
solution to determine the Hopf bifurcation point. The Jac
bian matrix analogous to Eq.~13! is

JII5S 21 21

~uss
II !2a a~uss

II !221/t D . ~22!

The real and imaginary parts of the eigenvalues ofJII near
the bifurcation point are

g52a2tuss
3 ~V2VH

II !,

V5A1/t2g2, ~23!

which obey the requirements for the Hopf bifurcation. Aga
we locate the transition by determining when the real par
the eigenvalues ofJII cross the imaginary axis: TrJII50.
This yields

VH
II 5

1

at
@Aat/~t11!21#. ~24!

e-
s,
.
l



te
ed

l
h
n

th
ze

to
tu
r-
ic
th
tiv
-
by

i-
te

t
s
th
o

ca
n

ur
y

in
a
c

lg

ic
n
ile

ee

tate
sen-
is

ion
ith

he

ed
ted
o
the
lip

l I
eri-

ur
-
-
the
of

h

he
y
cu-

e

h the
e

4992 57A. A. BATISTA AND J. M. CARLSON
Reintroducing the dimensional variables we obtainVH again
as monotonically decreasing function ofk, but no longer
linear:

VH
II 5

uM

at FAatsuM

kt1b
21G . ~25!

Results for realistic experimental parameters are illustra
in Fig. 4. Here we have taken the same parameters as us
model I, and again finda21'1 mm by fitting Eq.~25! to the
particular data pointVH510mm/s andk5440 N/m. From
Eq. ~25! we obtain the same value ofkmax, the maximum
stiffness associated with stick slip, as obtained for mode
The phase boundary curves in this case yielding a somew
better fit to experiments, which exhibit a power-law depe
dence ofVH on k over the range ofk considered@10#.

One of the main advantages in studying model II is
fact that the normal forms analysis does produce a non
value for the stability coefficienta1 which predicts the nature
of the transition~see the Appendix!. The basic method is
outlined in@28#, and involves another change of variables
radial and angular coordinates associated with the ampli
of the oscillating solution and its phase. At the Hopf bifu
cation point, the amplitude becomes nonzero. Supercrit
bifurcations are associated with continuous growth of
amplitude of oscillations and are predicted by a nega
stability coefficienta1 , while subcritical bifurcations are as
sociated with discontinuous changes and are predicted
positive stability coefficienta1 . For model II we obtain

a1
II5

a

8 S 3

t
21D ~26!

which allows for the possibility of either a direct or an ind
rect transition, depending on the values of the parame
Our estimates of realistic parameter values correspond to
subcritical case. This is consistent with most experiment
date which typically exhibit discontinuous transitions wi
intermittent stick slip observed in the neighborhood
Vc(k).

IV. NUMERICAL RESULTS

In this section we present a summary of our numeri
results for the dynamical phase diagrams of model I a
model II ~Fig. 4!. We have both confirmed the results of o
stability analysis in Sec. III for the transition from stead
sliding to stick slip, and checked for hysteresis by travers
the transition in the opposite direction. In each case we h
set our parameters to realistic values, as discussed in Se

We obtained our results by integrating Eqs.~8! and ~19!
incorporating the static friction condition given in Eq.~2!
when appropriate. We used a fourth-order Runge-Kutta a
rithm @29# with a fixed step sizeh5531025. This choice of
h is much less than any relevant time scale for the dynam
for model I the period of small oscillations at the bifurcatio
point is approximately 9.6 in our dimensionless units, wh
for model II the period is at least 0.96.

The dynamical phase diagrams as a function ofk andV
are illustrated in Fig. 4. Each point on the boundary betw
stick slip and steady sliding is obtained by increasingV in
d
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small stepsDV50.001 and then integrating forDt5400 in
order for the system to reach a new periodic steady s
before the pulling speed is again increased. Some repre
tative stick slip solutions are illustrated in Fig. 3. In th
direction the transition is identified with the first value ofV
for which the block fails to restick. At this value ofV and
beyond in both models we find that the new stable solut
corresponds to the constant velocity steady sliding state, w
no intermediate regime of small oscillations.

To locate the boundary traversing the transition in t
opposite direction~from the steady sliding side!, we ramp
down the pulling speed in small stepsDV520.001 for each
fixed value ofk. In this case, small perturbations are appli
to the steady sliding solution, and the transition is associa
with the value ofV at which the perturbations first begin t
grow. For these models, we have always found that
stable solution eventually converges to periodic stick s
oscillations.

The results presented in Fig. 4 illustrate that for mode
there is no hysteresis: the phase boundary computed num
cally in both directions agrees well with the results of o
stability calculations in Sec. III. Note that for any finite in
tegration timeDt, the numerical solution will suggest a non
zero hysteresis loop as shown in Fig. 5, where we plot
maximum spring force of the stable solution as a function
pulling speedV for fixed k. The transition is associated wit
the sharp drop from~essentially! the value associated with
the static friction maximum in the stick slip phase, to t
steady state valueF0(V) which corresponds to stead
sliding. Apparent hysteresis occurs in this numerical cal
lation because just above the transition~approached from the

FIG. 5. Sample bifurcation diagram for model I. We plot th
maximum spring force as a function ofV for fixed k53.5 kN/m.
The small hysteresis observed here is a transient associated wit
finite integration time at each value ofV, and decreases as th
integration time is increased.
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stick slip side! the rate at which the solution converges
steady sliding is very small. While the real part of the eige
value of the Jacobian~13! is negative in the steady slidin
phase, it crosses zero at the transition point. Thus, as
approach the transition from either side the growth~decay!
rate of small perturbations approaches zero. By increa
the integration timeDt we have confirmed that the size o
the hysteresis loop for model I decreases appropriately
that in the limit Dt→` we expect the phase boundaries
coincide exactly.

In contrast, for model II we clearly obtain hysteretic tra
sitions which are not sensitive to the integration timeDt.
Our numerical results for the transition from steady sliding
stick slip do coincide with the stability analysis as expect
but the transition associated with increasingV occurs at a
higher value than that which we observe on the way do
Sample hysteresis loops are illustrated in Fig. 6 where
plot the maximum spring force as a function of pulling spe
V for two different values of the stiffnessk. Figure 6~a!
illustrates our results for a comparatively large value ofk,
where the width of the hysteresis loop is observed to
relatively small compared to smaller values ofk, as illus-
trated in 6~b!. This is consistent with our normal forms b
furcation analysis presented in the Appendix, where we fi
that the rate of growth of the unstable limit cycle increas
with increasingk, suggesting a more rapid approach to t
stable stick slip cycle in the case of largek.

To determine the amplitudes of the unstable limit cyc
which are included in Fig. 6, we used the Poincare´ map. We

FIG. 6. Sample bifurcation diagrams for model II for~a! k
535 kN/m and~b! k53.5 kN/m. The width of the hysteresis cyc
decreases with increasingk as predicted by the normal forms ca
culation.
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begin with a small perturbation to the stationary point a
allow the solution to flow for one loop in the phase spa
defined by the state variable and spring force@u,2k~U2Vt)]
~see Fig. 7!. The amplitude of the initial perturbation is sub
sequently increased along a fixed axis from the station
point towards the stick slip orbit until we find the unstab
limit cycle. The only closed orbits in the phase space are
stationary point, the stable stick slip solution, and the u
stable orbit~which oscillates without coming to a comple
stop!. Initial conditions which flow towards the stationar
point flow lie within the unstable limit cycle, while initia
conditions which flow towards the periodic stick slip sol
tion are outside the unstable orbit. Some sample stable
unstable orbits are illustrated in Fig. 7.

V. CONCLUSIONS

We have studied dynamical phase transitions in two m
els of boundary lubrication. In both cases, our numeri
simulations have shown that the transition is strongly disc
tinuous, exhibiting a crossover from uniform steady slidi
directly to large amplitude stickslip oscillations. Linear st
bility analysis of these models@Eqs. ~17! and ~25!# yields
excellent agreement with our numerical results as the ve
ity is lowered or spring constant is decreased.

FIG. 7. A phase portrait of the unstable limit cycles and t
stick-slip limit cycles. Note that as we increaseV from the transi-
tion point VH

II the unstable cycle grows until it collides and elim
nates the stick-slip cycle, as illustrated in terms of the maxim
spring force in Fig. 5. Results are shown fork535 kN/m. The
small dot in the middle of the limit cycles marks the stationa
point.
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Discontinuous transitions to oscillatory states are typica
described by subcritical Hopf bifurcations. Indeed, our
sults for the stability coefficient for model II show that fo
realistic parameter values this is indeed the case. Subcri
Hopf bifurcations are accompanied by hysteresis, so
upon raising the velocity or increasing the stiffness,
steady sliding is resumed beyond the point where it w
observed when the transition was traversed in the oppo
direction. We observe this numerically in model II.

The behavior we observe originally in model I is mo
unusual. That is, the transition is discontinuous, but not h
teretic. This is consistent with, but certainly not proved
our result that to leading order the stability coefficient is ze
in that case. A stronger confirmation is obtained compar
the stability calculation with our previous results in whic
we calculated an approximate stick slip solutionU(t) which
was no longer self-consistent along the phase bound
Vc(k) @19#. In the regime in which the approximations we
valid, that result agrees with the result obtained here.

The primary goal of these studies is to develop a be
understanding of experimental systems, and the kinds of
and state friction laws that might describe them. For bou
ary lubrication, a great deal remains to be done in this reg
Phenomenological models such as those we have consid
are based on physical insight and represent reason
guesses for frictional constitutive relations. The underly
mechanism that the model assumes is based on mole
scale simulations, and the basic qualitative properties of
models agree with observations. One of the most impor
messages we extract from the phenomenological approa
that history dependence is of fundamental importance,
needs to be the focus of experimental measurements as
as microscopic models and simulations.

Our calculations open up the possibility for more detai
quantitative comparisons between experiments and these
specific phenomenological models. However, we are not
at a point where we can expect perfect agreement. W
phenomenological constitutive relations fit the data w
they can be important technologically. However, this ty
cally would require a systematic expansion involving lar
numbers of parameters, and the data is not sufficiently
cise at this point to warrant such an approach. Still it
important to think about these comparisons as stepp
stones to finding better models and planning experime
which will guide their development.

Indeed, a detailed comparison of model I and experime
is presented in@20#. Most of the experimental results fo
dynamical phase diagrams which have been obtained to
are somewhat more analogous to the results we have
tained here for model II, though even in that case the fit is
from perfect@10#. For lubricants such as tetradecane the
lationship between the transition velocityVc and the stiffness
k is reasonably well described by a power law@Vc(k)
;1/kg with 1,g,3#, as opposed to the linear relation
Eq. ~17!. Experimentally the final crossover is marked by
range of velocities over which intermittent stick slip is o
served, which can make it difficult to sharply define a tra
sition point. Some lubricants such as OMCTS have exhib
continuous as well as discontinuous transitions. Experime
to determine the dynamical phase diagram as a functionV
and k as well as external parameters such as tempera
y
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hydration, and load for cases which exhibit this range
behaviors would be of particular interest.
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APPENDIX: BIFURCATION ANALYSIS

In this Appendix we present a more complete descript
of the steps which led to our results for the stability coe
cients for model II in Sec. III. The null result obtained
leading order for model I can be obtained using the sa
method, which is outlined in detail in Ref.@28#.

The full nonlinear ODE system in the variablesx and y
which are centered at the fixed point is given by

S ẋ
ẏD5JIIS x

yD1S 0
h~x,y! D , ~A1!

whereJII is the Jacobian for model II given by Eq.~22!, and

h~x,y!5Axy1By21Cxy21Dy3. ~A2!

Here the coefficients are given by

A52ussa,

B52ussa2
1

usst
,

C5a,

D5a. ~A3!

We perform a linear transformation so that Eq.~A1! is
cast in the normal form@30#, where the matrix elements o
the Jacobian operator are the real and imaginary parts o
complex eigenvaluesl5g6 iV. That is, we define a coor
dinate transformation in terms of the linear operatorS such
that

S21JIIS5S g V

2V g D . ~A4!

Following standard techniques from linear algebraS andS21

are obtained from the real and imaginary parts of the eig
vectors ofJII :

S5~v rv i !5S 1 0

~212g! 2V
D ~A5!

and

S215
21

V S 2V 0

~11g! 1D . ~A6!

Next we implement the linear change of variables
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S w
z D5S21S x

yD ~A7!

in Eq. ~A1!, in order to express this system in the norm
form

S ẇ
ż D5S g V

2V g D S w
z D1S f ~w,z!

g~w,z! D ~A8!

with f (w,z)50, g(w,z)52h(w,2w2Vz)/V, andh(x,y)
as in Eq.~A2!.

The conditiong50 corresponds to the Hopf bifurcatio
point. The stability coefficienta1 determines whether th
bifurcation is subcritical or supercritical, and is calculat
using the nonlinear terms. The advantage in changing v
ables as we have done above, is that it allows us to apply
standard formula~see Ref.@28#!, which in our case reduce
to

a15
1

16
@gwwz1gzzz#2

1

16V
@gwz~gww1gzz!#. ~A9!

HereV and the partials ofg(w,z) are evaluated at the Hop
bifurcation point. They are

V5
1

At
,

gww52~A2B!/V5
2

Vtuss
II ,

gwz5A22B52S 1

uss
II t

2uss
II a D ,

gzz522BV522VS 2uss
II a2

1

uss
II t D ,

gwwz52~3D22C!52D52a,

gzzz56DV25
6a

t
. ~A10!

Finally we obtain

a15
a

8 S 3

t
21D . ~A11!

From Eq.~A11! in these~dimensionless! units for model II
a1.0 for t,3, a150 for t53, anda1,0 for t.3. For
model I the corresponding calculation yieldsa150 regard-
lie

ry
l

ri-
he

less of the other parameter values, which alone is incon
sive and requires a higher order nonlinear analysis@31#.

When the parameters are close to those associated
the bifurcation point and for initial conditions which are
the neighborhood of the fixed point a quasilinear transform
tion from the (w,z) coordinate system to one described
polar coordinates (r ,f) yields the following leading order
equations for the amplitude and phase of the oscillatory
lution:

ṙ 5r ~g1a1r 2!1O~r 5!, ~A12!

ḟ5V1O~r 2!. ~A13!

The Hopf theorem asserts that the phase flow of these e
tions is topologically equivalent to that of the full nonline
system near the fixed point@28#. Beyond the bifurcation
point g.0(V,VH), so that ifa1,0 there is a stable limit
cycle with r 5A2g/a1, and the transition is predicted to b
continuous~a supercritical bifurcation!, while if a1.0 the
transition is discontinuous~a subcritical bifurcation! with an
unstable limit cycle atr 5A2g/a1.

For model II we obtaing52A(a/t)(t11)3DV, where
DV5(V2VH

II ). Substituting in this expression, Eq.~A11!
and reintroducing the dimension from Eq.~6! we obtain the
following dependence of the expected radius of the lim
cycle on the stiffnessk:

r 5S 8b@k/~s3a!#1/2~kt/b11!3/2

@3b/~kt!21#
DVD 1/2

. ~A14!

Because the amplitude of the stick slip oscillations are
~essentially! fixed finite value, the dependence of the radi
of the unstable limit cycle onDV determines the width of the
hysteresis loop. Whenk@1 but still less than 3b/t, r grows
rapidly as DV increases. On the other hand, ask→0, r
}AkDV. This ask→kmax which marks the end of the stick
slip regime, the hysteresis loop is expected to become
creasingly narrow, and ask→0 we expect the hysteresis ga
to widen, consistent with our numerical results shown in F
6.

While our experimentally estimated parameter valu
have led us to focus primarily on a regime in which t
transition remains subcritical throughout the dynami
phase diagram, other parameter values can yield a p
boundary in which there is a crossover from a subcritical~at
small k! to a supercritical~at largek! transition atk53b/t.
The predicted radius of the orbit Eq.~A14! diverges at the
value ofk associated with the crossover, which suggests
transition will be extremely sharp, and thus very difficult
distinguish numerically from the discontinuous case.
-
H.
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@3# See, e.g.,Handbook of Micro/Nano Tribology, edited by B.
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